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Abstract 

The potential ,  symmetry  and Foppl  a r rangement  are 
given for distributing up to 60 point  charges on the 
surface of  a sphere so that  the Coulombic  potential  
is a minimum.  Some new configurations are described 
and a general  compar ison  made  with the hard-sphere  
case. 

Thomson ' s  problem. Tammes ' s  problem is where m 
approaches  infinity. These extreme cases are also 
known as the soft- and hard-sphere  cases respectively 
and are but  two of  many  similar problems that  have 
been posed over the years. For a more detailed 
account  of  these other  problems see Melnyk,  Knop  
& Smith (1977) and Ashby & Brittin (1986). 

Introduction 

The minimizat ion of  the potential  of  N points of  unit 
charge on the surface of  a unit sphere can be 
expressed as 

N 
V ( N , m ) = ½  E do ~ 

i j =  l 
i ~ j  

where V is the potential  energy, dij is the distance 
between points i and j ,  N is the number  of  point  
charges and m is a positive number .  When m = I the 
Coulombic  potential  is de termined and is known as 

0108-7673/92/010060-10503.00 

Method of calculation 

The technique used to calculate the min imum poten- 
tial was based on the method described by 
Metropolis ,  Rosenbluth,  Rosenbluth,  Teller & Teller 
(1953) and Kirkpatr ick,  Gellat  & Vecchi (1986) now 
known as s imulated anneal ing and exemplified by 
Wille (1986). Each point  is examined together  with 
a number  of  exploratory positions which form a circle 
a round the point. The angle this circle subtends at 
the centre of  the sphere is denoted as 0. The potential  
is calculated for these explora tory  points; if a lower 
potential  is found then the point  charge is moved to 
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that position. This procedure is repeated for each 
point. The whole process is iterated until 90% of the 
points do not change position, at which stage the 

N 
angle 0 is reduced by a constant factor. When the 

4 
required accuracy is obtained the process is termin- 5 
ated. The annealing process is introduced by 6 
occasionally moving a point to an exploratory posi- 7 8 
tion even though the potential is greater at that posi- 9 
tion. The 'temperature', 0, is kept at this particular 10 
value for a predetermined number of iterations before 11 12 
reducing it as before. When the temperature is quite 13 

low the annealing process is stopped and the 14 
15 

minimum potential is determined without any further 16 

random moves. The computer programs were written 17 
18 in Fortran using double-precision arithmetic and run 19 

on a Prime 9950 and a clone IBM 286. 20 
In order to aid the interpretation of the mimimized 21 

22 configurations, three-dimensional solids were 23 
envisaged consisting of triangular facets. Where 24 
square facets existed these were considered to be 25 

26 
composed of coplanar triangular facets. Each solid 27 

consists of N vertices, E edges and F facets. 28 
29 
30 
31 
32 
33 

Results 

Table 1 lists the potential, symmetry and Foppl 
configuration for N = 4-60 and includes three other 34 
configurations of high symmetry. Fig. 1 shows the 35 

36 
view looking down the major symmetry axis of the 37 

configuration for N = 8 to N = 31. The N = 8 projec- 38 
tion is at the bottom left-hand corner. Fig. 2 shows 39 4o 
the view looking up the major axis. Figs. 3 and 4 are 41 
a similar pair to Figs. 1 and 2 but for N = 32 to N = 55. 42 

A brief description is given for each configuration 43 
up to N = 50. 

N = 4  

As one would expect the regular tetrahedron is 48 
produced. Owing to its symmetry each point is 49 

50 equidistant from every other point and this allows a 51 
simple calculation of the potential energy of the sys- 52 
tem. Thus the potential energy (PE) is due to the 53 
interaction of four points with three other points, 54 
since each reaction is counted twice, then 55 

56 
P E  = 3 x 4 / ( 2 d )  57 

58 
where d is the distance between any two points and 59 

for a unit sphere is given by 60 
72 

d = [ 8 1 1 / 2 ,  92 

hence 100 

P E  = [~Z]l /2 = 3 . 6 7 4 2 3 .  

N = 5  

The trigonal bipyramid, consisting of an equatorial 
equilateral triangle together with a north and a south 
pole, is the structure of minimum energy for five 

Table 1. The Coulombic potential, symmetry group and 
Foppl configuration for N = 4 - 6 0  

E F Potential Group Foppl 
6 4 3.67423 T d 1, 3 or 2, 2 
9 6 6.47469 D3h 1,3, 1 

12 8 9.98528 Oh 3,3 or 1,4,1 
15 10 14.45298 Dsh 1,5,1 
18 12 19.67529 D4d 4,4 
21 14 25.75999 D3h 3,3,3 
24 16 32.71695 D4d 1,4,4,1 
27 18 40.59645 C2v 1 ,2 ,4 ,2 ,2  
30 20 49.16525 I h 34 or 1, 52, 1 
33 22 58.85323 C2v 1 ,2 ,2 ,4 ,2 ,2  
36 24 69.30636 D6d 1,6,6,1 
39 26 80.67024 D 3 35 
42 28 92.91166 T 1,35 
45 30 106.05040 Dsh 1,53,1 
48 32 120.08447 D4d 1,44,1 
51 34 135.08947 C2v 1,29 
54 36 150.88157 D3h 1,32,6,32,1 
57 38 167.64162 C2o 1,22,4,22,4,22 
60 40 185.28754 T d 1 ,3 .3 ,6 ,3 ,3 ,3  
63 42 203.93019 0 3 1,3q, 1 
66 44 223.34707 O 46 
69 46 243.81276 Cs 13,27,1,23,1 
72 48 265.13333 C2 213 
75 50 287.30262 Dsh 1,55,1 
78 52 310.49154 T 1,39 
81 54 334.63444 D 3 1,39,1 
84 56 359.60395 D 2 1,214,1 
87 58 385.53084 C3o 1,32,6,32,6,32 
90 60 412.26127 lh 1,56,1 
93 62 440.20406 Cs 12,2,1 ,24,1,26,1,2 ,1 ,  

2 1  
96 64 468.90485 D 2 112t6,1 
99 66 498.56987 C 2 1,4,215 

102 68 529.12241 D 2 2 ~8 
105 70 560.61889 Dsh 1,57,1 
108 72 593.03850 D6d 1,66,1 
111 74 626.38901 D3h 32,6 ,3 ,9 ,3 ,6 ,32  
114 76 660.67528 T d 1,32,6,32,6,3,6,32 
117 78 695.91674 D3h 1,32 ,6 ,3 ,9 ,3 ,6 ,32 ,1  
120 80 732.07811 Dsh 1,53,10,53,1 
123 82 769.19085 C2o 1,2,4 ,23,4 ,24,42,2 ,4 ,  

22 
126 84 807.17426 Oh 43,8,4,8,43 
129 86 846.18840 D 3 315 
132 88 886.16711 T 1,315 
135 90 927.05927 C~ 13,27,1,22,1,29,1,22 , 

1 
138 92 968.71346 O 412 
141 94 1011.55718 C3 1,316 
144 96 1055.18231 D6d 1,68,1 
147 98 1099.81929 D 3 317 
150 100 1145.41896 C 3 1,317 
153 102 1191.92229 C2v 1,4,2,42,2,42,22,44 , 

22,4 
156 104 1239.36147 C 2 227 
159 106 1287.77703 C2 1,227 
162 108 1337.09535 C2 228 
165 110 1387.38323 D 3 319 
168 112 1438.61825 D E 1 ,2 t~ ,4 ,22 ,4 ,2~ ,1  
171 114 1490.77334 C 2 1,229 
174 116 1543.83040 D 3 320 
210 140 2255.00119 I 1,514,1 
270 180 3745.61875 I h 1,53,10,52,102,52,10, 

53,1 
294 196 4448.35063 T 1,333 

points. The polar points are different to the equatorial 
positions; thus the polar points have a threefold axis 
whilst each equatorial position has a twofold axis. 
The mirror planes present give the configuration a 
Dah symmetry. The polar positions contribute a slight 
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Fig. 1. View down the major axis for N = 8 to N = 31. 

Fig. 2. View up the major axis for N = 8 to N = 31. 
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Fig. 3. View down the major axis for N = 32 to N = 55. 

Fig. 4. View up the major axis for N = 32 to N = 55. 
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excess of 1.214% to the total potential whilst each 
equatorial point is 0.809% lower. The nearest-neigh- 
bour distances (NND) for the equatorial-equatorial 
positions is 1.7320508 which is identical to the theo- 
retical value of {3} 1/2. The NND for the equatorial- 
polar position is 1.4142135 which again is identical 
to the theoretical value of {2} 1/2 

very common in more complicated configurations. It 
is the first arrangement where square facets are 
encountered. The Foppl configuration is 4,4, whilst 
the arrangement displays the Dab point group. 

The NND for the square facets are 1.172477 whilst 
the longer sides of the isosceles triangular facets are 
1.2876935 in length. 

N - - 6  

Like four points, six points produced a Platonic 
solid configuration, the octahedron. It can also be 
described as a square bipyramid where the polar and 
the equatorial positions are identical or as a trigonal 
antiprism. The Foppl configurations are 1,4,1 or 3,3 
respectively. The total PE can be calculated by assum- 
ing for each point four near neighbours at a distance 
d, and a more distant neighbour at d2 where 

dl = [ 2 ]  1/2 

and 

d 2 = 2. 

Thus the potential is given by 

PE = 6{4/[211/2 + ½} = 9.985281. 

The N N D  is {2} l/z which is the same as for N = 5 
and N = 7 since the same equator-to-pole distance is 
specified in both cases. 

N = 7  

This configuration follows on from five and six to 
produce a pentagonal bipyramid, like five the two 
polar points differ from the equatorial ones which 
have an excess of 0.909% of the average potential 
energy. The polar points have fivefold symmetry 
whilst the equatorial positions have twofold, together 
with the mirror planes the configuration has the Dsh 
point group. The Foppl configuration is 1,5,1. 

The NND for the equatorial positions is 1.1755705 
whilst the equatorial-polar distance is, as expected, 
1.4142136. 

N = 8  

One configuration for eight points is the cube. A 
simple calculation reveals there are three nearest 
neighbours, three next neighbours and one far neigh- 
bour giving 

PE = 8{2.59808 + 1.83712 +½} = 19.74077 

whereas the minimum energy found is 19.67529. Fur- 
ther examination of the structure shows it to be a 
square antiprism. This is a cube with the top face 
rotated through 45 ° so that the four points are now 
offset (in the staggered form) so that there is a lower 
potential compared to the eclipsed form of the cube. 
The staggered arrangement of consecutive rings is 

N = 9  

The nine points are arranged in three rings with 
each ring containing three points. The middle ring is 
positioned at the equator and the other two are 
equally displaced in the northern and southern hemi- 
spheres but in the staggered position relative to the 
equatorial ring. The three equatorial points have a 
0.596% excess of the potential. The N- and S-polar 
equilateral triangular facets differ from the remaining 
facets resulting in a O3h symmetry. Another descrip- 
tion of this arrangement is of a trigonal prism with 
the three oblong facets capped. The equatorial ver- 
tices are not nearest neighbours, the N- and S-polar 
rings are nearest neighbours at a distance of 1.40729 
rather than 1.41421 if the equator were such. The 
equilateral triangles are of length 1.2307058 whilst 
the capped positions have the polar rings as nearest 
neighbours at 1.1355403. 

N = I O  

This configuration is best described as the square 
antiprism of eight points which has the two square 
facets capped. These two points have an excess of 
0.771% of the charge. The nearest neighbour for the 
polar positions is at 1.07453, the original square facet 
is of length 1.28167 whilst the equatorial triangular 
facets are of length 1.09352. 

N = l l  

As one might expect eleven has a low symmetry, 
C2~, and has six different types of triangular facets. 
It is the first to contain a hexavalent vertex or 
hexamer. There are five different potential values; 
one at -0.826% of the average value, two at -0.486%, 
two at -0.216%, four at 0.017% and two at 1.081%. 

N = 1 2  

The expected icosahedron is produced. The 
minimum configurations for V = 4, 6 and 12 are those 
of the Platonic solids which consist of equilateral 
triangles. 

N = 1 3  

Like N =  11, 13 has the low C2~ symmetry with 
seven different types of triangular facets. It is one of 
the few configurations with more than 12 points which 
does not contain 12 pentamers. 
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N = 1 4  

14 is a highly symmetrical figure of D6d ; it is 
composed of twelve pentamers and two hexamers 
which are positioned at the poles. The twelve pen- 
tamers have an excess of 0.228% whilst the two polar 
hexamers have a 1.365% lower potential than the 
average. The polar nearest-neighbour distance is 
1.04368 whilst the near polar rings are separated by 
the distance 0.89030. The third distance is 1.02070. 

and 0.931924 whilst the equatorial one are 0.846946, 
0.846946, and 1.175570. 

N = 1 8  

This structure has the Foppl configuration of 1,4 4,1; 
it has tetravalent vertices at the poles with eight pen- 
tamers and eight hexamers. The four rings are stag- 
gered to one another without a twist giving it a Dad 
symmetry. 

N = 1 5  

The previous configurations differ from N = 15 in 
that they all contain a mirror plane and hence their 
mirror images are identical. This configuration does 
not contain a mirror plane and therefore its mirror 
image is not superimpossible; this property is known 
as stereoisomerism or enantiomorphism. The system 
consists of five rings with each ring containing three 
points giving a Foppl configuration of 35 with D 3 
symmetry. If the rings are simply staggered then the 
total potential is 80.67221 which is higher than the 
minimum of 80.67024. This lower potential is 
obtained by imparting a twist to successive rings thus 
removing the mirror plane. Since the twist can be 
made in a clockwise or anticlockwise direction then 
there are two forms. There are as expected twelve 
pentavalent vertices and three hexavalent ones which 
are situated in the third, equatorial, ring. The top and 
bottom rings form an equilateral facet of length 
0.973199. There are five different sized triangles. 

N = 1 6  

This configuration has a Foppl nomenclature of 
1,35, which is typical of tetrahedral symmetry. It can 
best be described as a truncated tetrahedron (12 ver- 
tices) with each original tetrahedral facet, now a 
hexagon, capped adding a further four points to make 
16 vertices. The equilateral triangular facets produced 
by the truncation are rotated so deforming the 
hexagonal caps. This twisting imparts enantiomorph- 
ism to the structure. The four capped positions are 
hexamers and occupy the tetrahedral points. There 
are only three different types of triangular facets 
present. The equilateral triangles are of length 
0.885285, whilst the facets directly attached to these 
are of size 0.885285, 0.918199 and 1.027089. The third 
facet has dimensions 0.918199, 1.027089 and 
0.828373. 

N = 1 7  

This system is highly symmetrical having a Dsh 
structure with a Foppl configuration of 1,53,1. The 
three rings are staggered with the equatorial ring 
containing the five hexamers. There are only three 
types of faces; polar, tropic and equatorial facets. 
The polar ones have dimensions 0.883677, 0.883677 

N = 1 9  

The Foppl arrangement of this system is 1,4,2,4,22,4 
and as such has a four-sided facet at the S pole. 
Examination of the distances shows it to be a rec- 
tangle of sides 0.84061 and 0.76391. As is the case 
usually with C-type symmetry prolonged iteration is 
required to reach a minimum value which eventually 
produced a value of 1.13586 as the diagonal. The 
N-pole point is not a tetramer since the next ring of 
two points is sufficiently close to produce a hexamer. 

N = 20 

The dodecahedron is not obtained as the minimum- 
energy configuration; instead a Foppl arrangement 
of 1,32,6,32,1 with D3h symmetry is obtained. The 
configuration contains three rhombus-shaped facets 
which are situated symmetrically around the equator 
such that two diagonally opposed points of each facet 
lie on the equator. These six points are all pentamers. 
The length of the side of the rhombus is 0.78949. 

N = 2 1  

The Foppl configuration is 1,22,4,22,4,22 and not 
1,220 as was originally thought; in fact it is nearly 
1,45. Like N - - 1 9  it has a four-sided facet at the S 
pole, however, this is a rhombus with sides 0.77681 
and diagonal distances of 1.05804 and 1.26222. 

N = 22 

This like N = 16 is tetrahedral but has mirror planes 
giving it Tn symmetry. It consists of the four basic 
tetrahedral positions each at the centre of a hexagon 
which is composed of a single type of scalene triangle, 
thus producing a threefold rotational axis. These 
hexagons touch each other at alternating apices. The 
gaps left consist of a large triangle which is triangu- 
lated to produce four smaller ones. There are only 
three kinds of triangles. 

N = 23 

This configuration is enantiomorphic like N = 15 
and N = 16. However, after this system diastereomers 
occur quite often. It has a Foppl arrangement of 1,37,1 
with D 3 symmetry since although the rings are 
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staggered a twist is imparted to them thus removing 
the mirror plane. 

N = 24 

At first sight this system appears to produce the 
snub cube, one of the Archimedian solids. The true 
snub cube has 32 equilateral triangular facets and six 
square facets which are distributed in an octahedral 
arrangement. If the points are on a unit sphere then 
each nearest-neighbour distance is the same at 
0.74420. Although each vertex is identical the 
triangular facets are divided into two kinds. 24 that 
are directly attached to the square facets and eight 
that are not. The potential for the semiregular solid 
is 223.45508 whilst a value of 223.24709 is obtained 
for the distorted configuration. The square facets are 
of dimension 0.71780; the eight non-attached 
triangular facets are equilateral of length 0.76601 
whist the remaining 24 triangles are of length 0.71780, 
0.76601 and 0.77680. 

N = 2 5  

This is the first arrangement which has no rotational 
symmetry, only a mirror plane which passes through 
five of the vertices. The single positions in the Foppl 
configuration are the apices in the mirror plane. 

N = 26 

The Foppl configuration of 213 together with a C2 
symmetry produces 24 differently shaped triangles. 

N = 27 

There are only four differently shaped facets each 
occurring in concentric rings. The five rings each of 
five apices are staggered. 

N =28 

This has T symmetry with only five differently 
shaped triangles. 

N = 29 

The D 3 structure has nine differently shaped 
triangles with three lozenge-shaped facets around the 
equator. 

N = 3 0  

The Foppl configuration is 1,214,1. However, the 
first three rings of two apices are sufficiently close 
together so as to make the N-pole vertex a hexamer. 
The distorted hexagon produced has only a twofold 
rotational axis. There are 13 differently shaped 
triangles. 

N = 3 1  

The Foppl configuration shows that there is an 
N-polar apex with an equilateral triangle in the S- 
pole region thus conserving the threefold rotational 
axis. 

N = 3 2  

This as expected has Ih symmetry with each facet 
consisting of an isosceles triangle of dimensions 
0.640852, 0.640852 and 0.713644. It is the dual of the 
Archimedian solid, the truncated icosahedron, the 
popular pattern nowadays described on footballs. 

N = 3 3  

The figure contains two four-sided facets both of 
which straddle the mirror plane. 

N =34 

Although the Foppl arrangement is 1,216,1 the first 
three rings of two apices are sufficiently close so as 
to produce a hexamer as a N and a S pole with 
twofold symmetry. There are 16 differently shaped 
triangles. 

N = 3 5  

The two top rings in the Foppl arrangement of 
1,4,215 are sufficiently close so as to make the N pole 
a hexamer with a twofold rotational axis. 

N = 3 6  

This has a Foppl configuration of 2 TM which requires 
a twist so that vertices in the alternating rings are 
more distant thus reducing the potential. 

N = 3 7  

There is a local minimum of 560.62798 with (?2 
symmetry compared to the global minimum of 
560.61889 with Dsh symmetry. There are five 
differently shaped triangles arranged in concentric 
rings. 

N =38 

The D6h arrangement consists of four differently 
shaped triangles arranged in rings each with six 
vertices. 

N = 3 9  

This arrangement has nine points around the 
equator with a Foppl configuration of 32,6,3,9,3,6,32. 
It consists of equilateral triangles at the N and S 
poles and has a total of nine differently shaped 
triangles. 
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N = 40 

This has Td symmetry with only five differently 
shaped triangles. 

N = 4 1  

This can be considered to be the N = 39 arrange- 
ment with the N and S poles added. 

N =42 

It was expected that the Ih configuration would be 
the global minimum but this was not the case. A 
potential of 732.25624 is higher than the minimum 
of 732.07811 found with Dsh symmetry having ten 
vertices around the equator. The configuration is best 
described as being derived from the icosidodecahe- 
dron which consists of 30 vertices, 20 triangular and 
12 pentagonal facets which occur in an icosahedral 
arrangement of 1,5,5,1. The nothern hemisphere is 
rotated so that the pentagons are in the eclipsed rather 
than the staggered position in relation to their 
southern counterparts. Each pentagon is then capped 
bringing the total number of vertices to 30+ 12 = 42. 

N = 43 

The iteration procedure took a long time for this 
configuration to converge but eventually it produced 
C2o symmetry. There are nine apices in one mirror 
plane and seven in the other giving 21 differently 
shaped triangles. 

N = 4 4  

The Oh symmetry is very obvious consisting of 
capped regular hexagons of which there are eight. 
The hexagons meet at alternating positions whilst the 
other positions form the comers of a square facet. 
Triangles emanate from the edges of the square to 
close the structure. There are only three differently 
shaped triangles. 

N =45 

There are two configurations of close potential, a 
C2v at 846.18865 and the global minimum, D3, at 
846.18840 which has 15 differently shaped triangles. 

N = 46 

This is a good example of where there are two local 
minima each close in potential to the global minimum. 
Thus, 

V=886.17146 C2 2 23 
V=886.17022 C2~ 1,4,22,42,22,42,2,42,2,4,1 
V=886.16711 T 1,315 . 

N = 47 

There are two configurations quite close in 
potential at 927.06227 and 927.05927 both with 
Cs symmetry. There are seven apices in the mirror 
plane defined by the Foppl nomenclature of 
13,27 ' 1 ,22 ,1 ,29  , 1 ,22 , 1. 

N = 48 

This configuration contains six square facets of 
length 0.72465. There are five differently shaped 
triangles but just two types of vertices. One consists 
of the apices of the square facets (4 x 6 = 24) whilst 
the other consists of the apex of the triangle whose 
base is the side of the square facets (4 x 6 = 24). 

N = 49 

This structure has a threefold vertex at the N pole 
with an equilateral triangle at the S pole. There are 
32 differently shaped triangles. 

N = 5 0  

The D6d configuration consists of five differently 
shaped triangles arranged in rings around the sixfold 
axis. 

D i s c u s s i o n  

Most earlier workers proposed the basic arrangement 
then calculated the potential by varying certain par- 
ameters which usually specified various angles. Lin 
& Williams (1973) show very clearly how the 
minimum configuration varies with the Coulorfibic 
power. When the number of vertices is large and the 
configuration is of low symmetry then the computa- 
tional time is extremely long due to the large number 
of parameters required to specify the particular 
configuration. This method will obviously fail if the 
minimum arrangement has not been considered as a 
possibility. King (1970) lists what may seem an 
exhaustive set of arrangements for N up to 16 but 
fails to include the correct configurations for N = 11, 
13, 15 and 16. Similarly, Munera (1986) examines 
only certain arrangements and thus has higher poten- 
tials for N =  11, 13, 15, 16, 19 and 20. Melnyk, Knop 
& Smith (1977) give a comprehensive review for N 
up to 16. However, the Foppl arrangement for N = 14 
of 1,62,1 is the optimal configuration with potential 
69.30636 rather than that proposed by Melnyk, Knop 
& Smith (1977) of 1,43,1. According to the present 
calculations the latter has a local minimum of 
69.34238 although Wille (1986) quotes Melnyk et al. 
as finding 69.496 for this arrangement. More recently, 
Weinrach, Carter, Bennett & McDowell (1990) have 
listed the symmetry for up to 50 points using a Monte 
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Table 2. Combined mean residuals for systems with C 
symmetry 

C o m b i n e d  m e a n  
N r e s i d u a l  S y m m e t r y  

11 0.001202 C2o 
13 0.000679 C2. 
19 0.000007 C2o 
21 0.000067 C2v 
25 0.000041 Cs 
26 0.000074 C 2 
31 0.000103 C3o 
33 0.000132 C a 
35 0.000012 C 2 
43 0.000009 C2~ 
47 0.000052 Cs 
49 0.000031 C 3 

Carlo random-walk method. Their data are in agree- 
ment except for N- -18 ,  30, 37, 38, 43, 46 and 49. 
However, comparison of potentials (Weinrach, Car- 
ter, Bennett & McDowell, 1991) shows that differen- 
ces only exist for N = 37, 38, 46 and 49. The other 
configurations differ in assignment of the symmetry 
elements; they used a semivisual approach and might 
have missed some rotational axes. 

In most instances, for a particular arrangement the 
x coordinate values sum to zero, and likewise for the 
y and x coordinates. However, with the configur- 
ations having C-type symmetry these sums are non- 
zero. Table 2 lists the arrangements with C-type sym- 
metry and their corresponding combined mean 
residuals. Ashby & Brittin (1986) point this out for 
the case of N = 11 but give no reason. If the residual 
sums of the x, y and z coordinates are denoted as 
dx, dy and dz for an N-particle configuration then 
the mean residuals are given as 

MRx -- dx / N 

MRy = dy/  N 

MRz = dz/N.  

The combined mean residual is defined as 

C M R =  { MR2x + MR 2 + MR2z} °5. 

This is a constant for each configuration and indepen- 
dent of the orientation of the system or initial coordin- 
ates in the iteration process. 

Tetrahedral symmetry, Ta, has been found for N = 
4, 22 and 40 whilst T is produced by N = 16, 28, 46 
and 100. The latter would form a series if only N = 70 
was present. Performing calculations whereby T sym- 
metry is forced on the arrangement produces a poten- 
tial of 2130.76887 which is higher than the minimum 
found of 2127.10090 for D2 symmetry. Configurations 
having T symmetry can be produced for values of N 
which conform to the formula 

N = 4 + 1 2 a  

where a is a positive integer. The first term corre- 
sponds to the four original tetrahedral positions 

Table 3. Angular separation for the hard and soft 
models 

N T h o m s o n ' s  a n g l e  T a m m e s ' s  a n g l e  
(o) (o) 

4 109.47122 109.47122 
5 90.00000 90.00000 
6 90.00000 90.00000 
7 72.00000 77.86954 
8 71.69415 74.85861 
9 69.18975 70.52878 

10 64.99563 66.14682 
11 58.53956 63.43495 
12 63.43495 63.43495 
13 52.31691 57.13670 
14 52.86609 55.67057 
15 49.22487 53.65783 
16 48.93622 52.24439 
17 50.10807 51.09033 
18 47.53442 49.55667 
19 44.90971 47.69191 
20 46.09332 47.43111 
21 44.32044 45.61322 
22 43.30200 44.74016 
23 41.48111 43.70996 
24 42.06531 43.69077 
25 39.60726 41.63446 
26 38.99162 41.03766 
27 39.93995 40.67761 
28 37.82374 39.35514 
29 36.39129 38.71365 
30 36.94193 38.59712 
31 36.37312 37.70981 
32 37.37737 37.47522 

Table 4. Convergence of distances from the soft to the 
hard sphere 

m d I d2 d3 

1 0.7178000 0.7660127 0.7768037 
2 0.7198987 0.7646470 0.7733341 
4 0.7238918 0.7617696 0.7674000 
8 0.7300616 0.7566854 0.7593555 

16 0.7362291 0.7515417 0.7522690 
32 0.7401096 0.7480303 0.7482113 
64 0.7421356 0.7461527 0.7461979 

128 0.7431653 0.7451883 0.7451994 
256 0.7436845 0.7446995 0.7447023 
512 0.7439451 0.7444534 0.7444541 

1024 0.7440756 0.7443300 0.7443302 
2048 0.7441409 0.7442683 0.7442683 

whilst the factor of 12 in the second term shows that 
for every unique point added a further 11 points are 
needed to conserve the T-group symmetry. The 
minimum potential for N = 52 is 1145.41896 with Ca 
symmetry whilst the T configuration has a value of 
1145.44733 although both have a Foppl arrangement 
of 1,317 . 

Icosahedral symmetry, Ih, occurs for N = 12, 32 
and 92 whilst I symmetry occurs for N = 72. Surpris- 
ingly, for N =42 a Dsh configuration of potential 
732.07811 is obtained which is lower than the icosahe- 
dral arrangement of potential 732.25624. 

Comparison between the hard- and soft-sphere 
models shows that generally the soft approach pro- 
duces a range of near-neighbour distances unlike the 
single-valued hard case. In doing so the soft model 
produces lower potentials. Table 3 compares the near- 
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ne ighbour  distances in terms of  the angle subtended 
at the centre of  the sphere for the hard and soft cases. 
The hard data are a compi la t ion  from Clare & Kepert  
(1986), Kottwitz (1991), Lazic, Senk & Seskar (1987), 
Mackay,  Finney & Gotoh  (1977), Szekely (1974) and 
Tarnai  & Gaspar  (1983, 1991). 

The case of  N = 24 for rn = 1 produces a distorted 
snub cube which has three near -ne ighbour  distances. 
As rn is increased the three separate values converge 
to a single value approach ing  0.74420 for the true 
snub cube. Table 4 shows the convergence of  the 
distances with increasing power  of  m. 
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Abstract 

Recently, Rius & Miravitlles [Acta Cryst. (1991). A47, 567- 
571] have shown the viability of simultaneously refining 
the phases of the largest structure factors by least-squares 
minimization of the quantity R=Y~HW(H)[F(H) 2 -  
Fcalc(H~2] 2 where the H summation extends over all 
measured reflections and w(H) is a weighting factor. Here, 
an alternative method of minimizing R by sequentially 
refining the phases 'Ph of the largest structure factors is 
suggested that takes advantage of the possibility of express- 
ing OR/O~h = 0 as an explicit function of ~Ph- 

Let the residual R be defined according to the expression 

R t ( ~  ) =Y, w(H)m(H)[E(H)E-E*(H)E~(H)]  2, (1) 
H 

0108 -7673 / 92/010069-02503.00 

or, alternatively, 

g2(~)  = Y~ w ( n ) m ( n ) [ E ( n ) - E ¢ ( n ) ]  2, (2) 
H 

where • represents the collectivity of phases 'Ph of the 
strong normalized structure factors E(H) and H denotes 
the measured reflections in one asymmetrical unit of the 
reciprocal space. The factor re(H) is the multiplicity of H 
and w(H) is the inverse of the variance associated with the 
difference E(H)2-Ec(H)  2 [or E(H)-Ec(H)] .  Applying 
Sayre's equation (Sayre, 1952), E~(H) may be approximated 
by 

E~(H) = E~(H) exp iq~ H = 0(H) ~ E(h ' )E(H-  h') (3) 
h' 

with E(b') and E ( H -  b') belonging to the set of strong E's 
and 0(H) a scaling factor. Obviously, the residual R will 
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